Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.

نویسندگان

  • Renaud Ronsse
  • Kunlin Wei
  • Dagmar Sternad
چکیده

Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.

Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performan...

متن کامل

Dynamics and Control of Bouncing Ball

This paper investigates the control of a bouncing ball using Model Predictive Control. Bouncing ball is a benchmark problem for various rhythmic tasks such as juggling, walking, hopping and running. Humans develop intentions which may be perceived as our reference trajectory and tries to track it. The human brain optimizes the control effort needed to track its reference; this forms the central...

متن کامل

Passive vs. active control of rhythmic ball bouncing: the role of visual information.

The simple task of bouncing a ball on a racket offers a model system for studying how human actors exploit the physics and information of the environment to control their behavior. Previous work shows that people take advantage of a passively stable solution for ball bouncing but can also use perceptual information to actively stabilize bouncing. In this article, we investigate (a) active and p...

متن کامل

Chapter 4 Robust Closed - Loop Control of the Bouncing Ball

As illustrated in Chapter 3, open-loop stabilization of the bouncing ball requires negative acceleration of the actuator at impact (eq. (3.19), see Schaal et al., 1996). In contrast, the mirror law algorithms have been designed in closed-loop and can consequently afford positive acceleration at impact. The aim of this chapter is to discuss the role of acceleration tuning for robust closed-loop ...

متن کامل

Dynamic Dexterity for the Performance of "Wall-Bouncing" Tasks

In this paper, we consider ”wall-bouncing” task in which we repeat the process of hitting the ball that rebounds from the wall and the table as a typical example of dexterous batting tasks. Through the stability analysis of a discrete system, we reveal that required dexterity varies depending on the location of equilibrium points, that is, the shape of the ball trajectory. A feedback control sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 103 5  شماره 

صفحات  -

تاریخ انتشار 2010